Beyond axis-alignment:
 BART w/ categorical variables \& oblique decision rules

Sameer K. Deshpande

University of Wisconsin-Madison
19 October 2023

Nonparametric network-linked regression

- Observe data on a network $\mathcal{G}=(V, E)$
- n_{v} pairs $\left(x_{v t}, y_{v t}\right)$ at vertex v
- $\mathbb{E}[y \mid x]$ may vary across network
- I.e. $x \in[0,1]^{p}$ interacts w / v

Nonparametric network-linked regression

- Observe data on a network $\mathcal{G}=(V, E)$
- n_{v} pairs $\left(x_{v t}, y_{v t}\right)$ at vertex v
- $\mathbb{E}[y \mid x]$ may vary across network
- I.e. $x \in[0,1]^{p}$ interacts w / v

- Idea: introduce vertex label v as covariate
- Model: $y_{v t} \sim \mathcal{N}\left(f\left(\boldsymbol{x}_{v t}, v\right), \sigma^{2}\right)$

因 Hard to pre-specify correct functional form

- Encourage network smoothness so $f(x, v) \approx f\left(x, v^{\prime}\right)$ if $v \sim v^{\prime}$?

Pitfalls of one-hot encoding

- $X \in\left\{c_{1}, \ldots, c_{K}\right\}$
- One-hot encoding: $X \rightarrow\left(\tilde{X}_{1}, \ldots, \tilde{X}_{K}\right)$
- $\tilde{X}_{k}=\mathbb{1}_{\tilde{X}}\left(X=c_{k}\right)$
- Treat \tilde{X}_{k} 's as continuous

Pitfalls of one－hot encoding

－$X \in\left\{c_{1}, \ldots, c_{K}\right\}$
－One－hot encoding：$X \rightarrow\left(\tilde{X}_{1}, \ldots, \tilde{X}_{K}\right)$
－$\tilde{X}_{k}=\mathbb{1}_{\tilde{X}}\left(X=c_{k}\right)$
－Treat \tilde{X}_{k}＇s as continuous

－Decision trees built w／\tilde{X}_{k}＇s can induce $2^{K}-K$ partitions of the form

$$
\overbrace{\left\{c_{1}\right\} \cup \cdots\left\{c_{k}\right\}}^{k \text { singletons }} \cup \overbrace{\left\{c_{k+1}, \ldots, c_{K}\right\}}^{\text {set with } K-k \text { elements }}
$$

奋 Bell number $B_{k} \gg(K / 2)^{K / 2} \gg 2^{K}-K$
Q⿴囗大直 Zero prior probability on overwhelming majority of partitions of levels因 One－hot encoding can＇t leverage network structure．．．

Decision rule prior

1. Draw $j \sim \operatorname{Multinomial}\left(\theta_{1}, \ldots, \theta_{p}\right)$ where $\theta_{j}=\mathbb{P}\left(\right.$ split on $\left.X_{j}\right)$
2. Compute set of all available values \mathcal{A}_{j}

- \mathcal{A}_{j} determined by rules at ancestors
- X_{j} continuous $\rightarrow \mathcal{A}$ is an interval
- X_{j} categorical $\rightarrow \mathcal{A}$ is discrete set

3. Draw random subset \mathcal{C} from \mathcal{A}_{j}

- X_{j} continuous: set $\mathcal{C}=[0, c), c \sim \mathcal{U}\left(\mathcal{A}_{j}\right)$

- X_{j} categorical: assign elements of \mathcal{A}_{j} to \mathcal{C} with probability 0.5

Example: Partitions of Philadelphia's census tracts

() One-hot encoding: no "borrowing strength" across tracts

Example: Partitions of Philadelphia's census tracts

() One-hot encoding: no "borrowing strength" across tracts
;) Uniformly partitioning levels: pools many tracts together ...
;) ... but partially pools data across geographically disparate regions

Example: Partitions of Philadelphia's census tracts

(). One-hot encoding: no "borrowing strength" across tracts
;) Uniformly partitioning levels: pools many tracts together ...
;) ... but partially pools data across geographically disparate regions

- How can we leverage adjacency and achieve spatial smoothness???

Cutting spanning trees

- Goal: partition $\mathcal{G}[\mathcal{A}]$ into two connected components

1 Draw uniform spanning tree of $\mathcal{G}[\mathcal{A}]$ (Wilson's algorithm)
2 Delete an edge from spanning tree to partition into two components
() Full support: positive prior prob. on every partition of \mathcal{G} into connected components

Example: prior draws of $f(v, t)$

- Conjecture: infinite-tree limit is Gaussian process $\operatorname{GP}(0, k)$

$$
\begin{aligned}
& k\left((\boldsymbol{x}, v),\left(\boldsymbol{x}^{\prime}, v^{\prime}\right)\right) \propto \\
& \mathbb{P}\left((\boldsymbol{x}, v) \text { and }\left(\boldsymbol{x}^{\prime}, v^{\prime}\right) \text { in same leaf }\right)
\end{aligned}
$$

- k determined implicitly by a recursive partitioning process

Prior draw of $M=100$ regression tree ensemble

Other ways to partition networks

Θ Deleting uniform edge from spanning tree can create singletons

- Idea 1: form "hot spots" based on a random ball
© Simpler to implement: pick a vertex \& take all within random distance
(:) Does not maintain connectivity
- Idea 2: use second smallest eigenvector of graph Laplacian
- Network partitioning processes determines degree of smoothness
- Conjecture: infinite tree limit is a GP w/ kernel k
- $k\left(v, v^{\prime}\right)=\mathbb{P}\left(v \& v^{\prime}\right.$ co-clustered in random recursive partitioning $)$.

Multiple resolutions

- Idea: run BART w/ additional network-structured predictors
- Challenge: how strictly do we enforce the hierarchical structure?
- Split on high resolution after exhausting all lower resolutions?
- Allow splits on lower resolution after splitting on higher resolution?

Oblique BART

- Categorical rule $\left\{X_{j} \in \mathcal{C}\right\}$ equivalent to $\left\{\sum_{c \in \mathcal{C}} \mathbb{1}\left(X_{j}=c\right)<0.5\right\}$
- Oblique trees: decision rules based on linear combinations of x_{j} 's
- Implementation: easier to use rules of form $\left\{\phi^{\top}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)<0\right\}$
- x_{0} drawn from polytope and normal direction ϕ draw from a prior

Parting thoughts \& other on-going projects

- Don't one-hot encode categorical predictors w/ regression trees!
- BART with random basis expansion in leafs for interrupted time series
- BART with image input
- Extending BART to more complex input space involves implementing
- Recipe to randomly split $X \subseteq \mathcal{X}$ into two disjoint pieces
- Efficient representation of subsets of \mathcal{X}
- Fast way to check whether \boldsymbol{x} is in a given subset

Parting thoughts \& other on-going projects

- Don't one-hot encode categorical predictors w/ regression trees!
- BART with random basis expansion in leafs for interrupted time series
- BART with image input
- Extending BART to more complex input space involves implementing
- Recipe to randomly split $X \subseteq \mathcal{X}$ into two disjoint pieces
- Efficient representation of subsets of \mathcal{X}
- Fast way to check whether \boldsymbol{x} is in a given subset

Thanks, y'all!

Email: sameer.deshpande@wisc.edu
Package: https://github.com/skdeshpande91/flexBART
Website: https://skdeshpande91.github.io
Preprint: [arXiv:2211.04456]

