Beyond axis-alignment: BART w/ categorical variables & oblique decision rules

Sameer K. Deshpande

University of Wisconsin-Madison

19 October 2023

#### Nonparametric network-linked regression

- Observe data on a network  $\mathcal{G} = (V, E)$
- $n_v$  pairs  $(\mathbf{x}_{vt}, y_{vt})$  at vertex v
- $\mathbb{E}[y|\mathbf{x}]$  may vary across network
- I.e.  $\mathbf{x} \in [0,1]^p$  interacts w/ v



## Nonparametric network-linked regression

- Observe data on a network  $\mathcal{G} = (V, E)$
- n<sub>v</sub> pairs (x<sub>vt</sub>, y<sub>vt</sub>) at vertex v
- $\mathbb{E}[y|\mathbf{x}]$  may vary across network
- I.e.  $\mathbf{x} \in [0,1]^p$  interacts w/ v



- Idea: introduce vertex label v as covariate
- Model:  $y_{vt} \sim \mathcal{N}(f(\mathbf{x}_{vt}, v), \sigma^2)$
- - Encourage network smoothness so f(x, v) ≈ f(x, v') if v ~ v'?

## Pitfalls of one-hot encoding

- $X \in \{c_1,\ldots,c_K\}$
- One-hot encoding:  $X o ( ilde{X}_1, \dots, ilde{X}_{\mathcal{K}})$ 
  - $\bullet \quad \tilde{X}_k = \mathbb{1}(X = c_k)$
  - Treat  $\tilde{X}_k$ 's as continuous



# Pitfalls of one-hot encoding

- $X \in \{c_1,\ldots,c_K\}$
- One-hot encoding:  $X o ( ilde{X}_1, \dots, ilde{X}_K)$ 
  - $\check{X}_k = \mathbb{1}(X = c_k)$



• Decision trees built w/  $\tilde{X}_k$ 's can induce  $2^K - K$  partitions of the form

k singletons set with K - k elements

$$\{c_1\}\cup\cdots\{c_k\}\cup\{c_{k+1},\ldots,c_K\}$$

 $\circledast$  Bell number  $B_k \gg (K/2)^{K/2} \gg 2^K - K$ 

Zero prior probability on overwhelming majority of partitions of levels
 One-hot encoding can't leverage network structure...

S.K. Deshpande (UW-Madison)

## Decision rule prior

- 1. Draw  $j \sim \text{Multinomial}(\theta_1, \dots, \theta_p)$  where  $\theta_j = \mathbb{P}(\text{split on } X_j)$
- 2. Compute set of all available values  $A_i$ 
  - $A_j$  determined by rules at ancestors
  - $X_j$  continuous  $\rightarrow A$  is an interval
  - $X_j$  categorical  $\rightarrow \mathcal{A}$  is discrete set
- **3**. Draw random subset C from  $A_j$ 
  - $X_j$  continuous: set  $C = [0, c), c \sim U(A_j)$
  - ► X<sub>j</sub> categorical: assign elements of A<sub>j</sub> to C with probability 0.5



#### Example: Partitions of Philadelphia's census tracts



One-hot encoding: no "borrowing strength" across tracts

#### Example: Partitions of Philadelphia's census tracts



One-hot encoding: no "borrowing strength" across tracts
 Uniformly partitioning levels: pools many tracts together ...
 ... but partially pools data across geographically disparate regions

## Example: Partitions of Philadelphia's census tracts



- © One-hot encoding: no "borrowing strength" across tracts
- © Uniformly partitioning levels: pools many tracts together ...
- $\ensuremath{\textcircled{\ensuremath{\Theta}}}$  . . . but partially pools data across geographically disparate regions
- How can we leverage adjacency and achieve spatial smoothness???

## Cutting spanning trees



- Goal: partition  $\mathcal{G}[\mathcal{A}]$  into two connected components
  - 1 Draw uniform spanning tree of  $\mathcal{G}[\mathcal{A}]$  (Wilson's algorithm)
  - 2 Delete an edge from spanning tree to partition into two components
- Full support: positive prior prob. on every partition of G into connected components

# Example: prior draws of f(v, t)

 Conjecture: infinite-tree limit is Gaussian process GP(0, k)

$$k((\pmb{x}, \pmb{v}), (\pmb{x}', \pmb{v}')) \propto$$
  
 $\mathbb{P}((\pmb{x}, \pmb{v}) \text{ and } (\pmb{x}', \pmb{v}') \text{ in same leaf})$ 

• *k* determined implicitly by a *recursive partitioning process* 



Prior draw of M = 100 regression tree ensemble

## Other ways to partition networks



Deleting uniform edge from spanning tree can create singletons

- Idea 1: form "hot spots" based on a random ball
  - © Simpler to implement: pick a vertex & take all within random distance
  - Ooes not maintain connectivity
- Idea 2: use second smallest eigenvector of graph Laplacian
- Network partitioning processes determines degree of smoothness
  - Conjecture: infinite tree limit is a GP w/ kernel k
  - ▶  $k(v, v') = \mathbb{P}(v \& v' \text{ co-clustered in random recursive partitioning}).$

## Multiple resolutions



- Idea: run BART w/ additional network-structured predictors
- Challenge: how strictly do we enforce the hierarchical structure?
  - Split on high resolution after exhausting all lower resolutions?
  - Allow splits on lower resolution after splitting on higher resolution?

## **Oblique BART**



- Categorical rule  $\{X_j \in \mathcal{C}\}$  equivalent to  $\left\{\sum_{c \in \mathcal{C}} \mathbb{1}(X_j = c) < 0.5
  ight\}$
- Oblique trees: decision rules based on *linear combinations* of x<sub>i</sub>'s
- Implementation: easier to use rules of form  $\{\phi^{\top}(\mathbf{x} \mathbf{x}_0) < 0\}$
- $x_0$  drawn from polytope and normal direction  $\phi$  draw from a prior

## Parting thoughts & other on-going projects

- Don't one-hot encode categorical predictors w/ regression trees!
- BART with random basis expansion in leafs for interrupted time series
- BART with image input
- Extending BART to more complex input space involves implementing
  - Recipe to randomly split  $X \subseteq \mathcal{X}$  into two disjoint pieces
  - Efficient representation of subsets of  $\mathcal X$
  - Fast way to check whether x is in a given subset

## Parting thoughts & other on-going projects

- Don't one-hot encode categorical predictors w/ regression trees!
- BART with random basis expansion in leafs for interrupted time series
- BART with image input
- Extending BART to more complex input space involves implementing
  - Recipe to randomly split  $X \subseteq \mathcal{X}$  into two disjoint pieces
  - Efficient representation of subsets of X
  - Fast way to check whether x is in a given subset

# Thanks, y'all!

Email: sameer.deshpande@wisc.edu Package: https://github.com/skdeshpande91/flexBART Website: https://skdeshpande91.github.io Preprint: [arXiv:2211.04456]