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Goal of This Talk

Discuss some areas where I wish BART was more developed.

Discuss some variants of BART I think are potentially
useful.

Discuss some problems in model summarization.

Hoping to stimulate some discussion.
▶ Open to being wrong on all counts!

▶ Maybe converge on some ideas worth pursuing.

Roughly ordered from “practical” to “abstract”, but I don’t
value purely abstract topics.

2 / 36



Usability of BART
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Holes in Software Ecosystem

Vast majority of applications just use the usual semiparametric normal model

Yi = r(Xi) + ϵi, ϵi ∼ Normal(0, σ2).

Adding models on the next slide would form part of a complete ecosystem,
which we are far away from.

All of these need good interfaces as well! Not glamorous, but I think
important if we care about people using BART.

Diagnostics
Automatic model comparison
Basic S3 methods (plot, summary, coef, etc.)
Posterior summaries
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List of Methods

For reference, the mediation package covers most of these models.

5 / 36



Soft BART
Decision Tree
A decision tree can be represented as

g(x; T ,M) =
∑

ℓ

ϕℓ(x)µℓ,

where ϕℓ(x) = I(x goes to leaf ℓ). Not smooth!

Idea: replace step function ϕℓ(x)’s with a partition of unity:

ϕℓ(x) =
∏

b∈A(ℓ)
ψb(x)I(path to ℓ goes left)×{1−ψb(x)}I(path to ℓ goes right)

where, e.g., ψb(x) = [1 + exp{−(x− cb)/τb}]−1.
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Soft Decision Trees
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Faster SoftBart

Claim
The soft version of BART gives superior performance to standard
BART. I’m aware of no problem where Soft BART is worse than
BART, but there are settings where it is meaningfully better.

Problem
Soft BART is too slow to be practical in many settings,
especially for larger N .
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Accelerating Soft BART?

Ideas depend a bit too much on the technical details.

Possibly can be acceleration through:
▶ Smarter choice of ψb(x) that allows caching computations.

▶ Better bookkeeping.

▶ 2x+ speedup possible from making my code less redundant.

▶ XBART-type extensions?

Unrelated problem: Poisson regression (or similar) for
Soft BART?

Possibly scooped on this: Ran and Bai (2023) report 10x
speedup! (Can Drew add to package?!)
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Robust Inference With BART
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Model Robustness Problem

The Problem
BART models are usually restricted to inference in parametric
families such as Gaussian, binomial, or Poisson models. How can
we adapt BART to work in general settings when we are not
confident in parametric assumptions?

Possible Solutions
Build really flexible nonparametric models?
Use robust pseudo-likelihood methods?
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Why I Care About Robustness

Bayesian inference usually assumes parametric models.

When parametric assumptions fail, point estimates are
maybe still good.

Error bars, on the other hand, are bad!
▶ Confidence intervals for, e.g., causal effects.

▶ Prediction intervals

Sometimes, we want to estimate non-standard things:
▶ Quantiles and CDFs

▶ Higher order moments

▶ Etc.
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Really Flexible Models: DPMs

Idea 1: Maybe some model with a “really flexible” error
distribution? E.g.,

Yi = r(Xi) + ϵi, f(ϵ) =
∞∑

k=1
πk Normal(ϵ | µk, σk)

with f(ϵ) modeled using a Dirichlet process mixture model.
(George et al. 2019)

Flexible errors, but not covariate dependent, e.g., cannot capture
heteroskedasticity.
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Really Flexible Models: Tilting

Idea 2: Take some desired parametric model and “tilt” it:

f(y | x) ∝ Normal{y | r(x), σ2} × Φ{ℓ(y, x)}.

Really flexible! Directly modifies a desired model as well! (Li,
Linero, and Murray 2022)

Pretty hard to deal with computationally; no direct access to
quantities of interest like the mean; just seems sort of ridiculous.
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Really Flexible Models: More Parametric

Idea 3: Specify a really flexible parametric model like

Yi ∼ skew-tν

µ(Xi), σ(Xi), α(Xi)︸ ︷︷ ︸
skew

 .

Called a location-scale-skewness (LSS) model (Stasinopoulos,
Rigby, and Bastiani 2018; Um et al. 2022).

Strikes a good balance in terms of flexibility, capturing many
features of distributions we care about, while being easy-ish to fit
and easy-ish to interpret.
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Pseudo-Likelihoods: Quasi Models

Idea 4: Use the quasi-likelihood

Lϕ(µ) =
∏

i

exp
{∫ µ(Xi)

Yi

Yi − t

ϕ V (t) dt
}
,

where V (t) is a user-specified variance function and ϕ is a
dispersion parameter. Combine this with a BART prior on µ(·).

Looks reasonable to me if we are happy with V (t)!

Problem: Quasi-likelihood carries no information on ϕ.
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Pseudo-Likelihoods: Quasi Models

Hack to infer ϕ: update ϕ based on the sampling distribution

1
N

N∑
i=1

{Yi − µ(Xi)}2

V {µ(Xi)}
•∼ Gam

(
N

2 ,
N

2ϕ

)
,

with ϕ−1 ∼ Gam(a, b) for approximate conjugacy.

Have not tried this! But it seems like a reasonable way to
introduce quasi-Poisson and quasi-Binomial models into the
toolkit.

Problem: Existence of stationary distribution? Does it actually
work?
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Moment Based Methods

Problem
The goal standard would be for me to obtain valid inference from an
arbitrary estimating equation

E[s{Yi; r(x)} | Xi = x] = 0
such that the posterior is valid irrespective of the data generating process.

Bayesian generalized method of moments?
Bayesian generalized estimating equations?
Bayesian exponentially tilted empirical likelihood?
Reduction to “robust” approx-sufficient statistics?
I have no idea how to do this effectively.
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Orthogonalizing BART Models
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Orthogoanlized Ensembles
Consider a multiple forest model:

Yi = α(Xi) + β(Ai, Xi) + ϵi.

Examples:

Bayesian causal forest

Varying coefficient BART models

Some targeted smoothing models I’ve used.

Problem
It is possible that α(Xi) and β(Ai, Xi) are highly correlated!
This leads to all sorts of practical issues.

Can be resolved, e.g., by ensuring that Cov{β(Ai, Xi), Xi} = 0,
referred to as orthogonalization.
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Why I Care About Orthogonalizing

Much better mixing.

Occasionally better statistical inference.

▶ Immediately suggests Robbins transform in causal inference.

▶ Automatically incorporates “clever covariates”.

Better model identifiability.
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Gaining Insights from Orthogonal GPs

A model that is very simple to orthogonalize is the Gaussian
process. Suppose

Y = Xβ + r + ϵ, ϵ ∼ Normal(0, σ2I).

Given a kernel matrix Σ for r, can make r uncorrelated with X
using the replacement kernel

(I − Π)Σ(I − Π)

where Π = X(X⊤X)−1X⊤ is the projection onto C(X).
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Orthogonalized GP Plus Horseshoe

Model
Generative model

Yi = X⊤
i β + γ r(Xi) + ϵi

with r(x) either (i) orthogonalized or (ii) not orthogonalized.

Prior
r(x) has (orthogonalized) GP prior with squared
exponential kernel
βj , γ ∼ Normal(0, τ2λ2

j )
τ, λj ∼ C+(0, 1)
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Mixing

Without orthogonalization, r(x) is confounded with x⊤β.
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Applications to BART

When using the general BART model, orthogonalize with

∑
t,ℓ

{ϕtℓ(x) − x⊤(X⊤X)−1X⊤ϕtℓ}µtℓ.

In a BCF, suggests we should instead use a forest of the form

µ(Xi) + {Ai − ê(Xi)} τ(Xi),

which is already a good idea for statistical reasons.

Also relevant for hierarchical models, where it leads
naturally to “within-between” models.

25 / 36



Targeted Smoothing

A targeted smoothing (Starling et al. 2020; Li, Linero, and
Murray 2022) approach takes

∑
t,ℓ

ψt(z)ϕtℓ(x)µtℓ.

The variable Zi is the variable we want to smooth over.

Orthogonalize by instead using

∑
t,ℓ

[ψt(z) − E{ψt(Zi) | Xi = x}]ϕtℓ(x)µtℓ.

For certain ψt’s and models for Zi, expectation will be easy
to compute (Fourier features, for example).
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Posterior Projections
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Uncertainty in Projections

Posterior Project Approach
To produce an interpretable model summary, we project µ(x) onto an
interpretable model class:

µ⋆(x) = x⊤β where β = arg min
b

∥µ(X) − X⊤β∥2

Problem?
The definition of β is sensitive to the choice of norm, e.g.,

∥g∥2
FN

= 1
N

N∑
i=1

g(Xi)2 or ∥g∥2
FX

=
∫

g(x)2 FX(dx).
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A Bad Thought Pattern

I probably (not always) want to use FX .

Estimating FX is a pain.

I’ll use FN instead because it is easier.

It probably won’t make a big difference.
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Evidence of Badness

Consider estimating linear projection µ⋆(x) = β0 + β1 x:
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Posterior standard deviation of β1 is roughly 7 times larger if using
FX rather than FN , and the difference doesn’t go away with larger
samples!
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Evidence of Badness
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Also a Problem for Summary R2

Friedman problem with GP. When FN is used instead, we
get tight concentration around 0.7.
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Why Does This Happen?

Suppose

Yi = X⊤
i β + ϕ(Xi)⊤γ + ϵi,

where ϕ(x) has been orthogonalized with respect to FN .

Variance of Yi conditional on X: σ2

Variance of Yi unconditional on X: γ⊤ Var{ϕ(Xi)}γ + σ2

γ⊤ Var{ϕ(Xi)}γ gets absorbed as FX uncertainty!

The worse the approximation, the larger the inflation.
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Is This a Real Problem?

I can’t be the first person to notice this?

▶ It seems likely Jared and Richard know this already.
▶ I haven’t found any reference acknowledge this as an issue.

Extra uncertainty comes packaged with not knowing FX .

If you genuinely think FN (or the empirical on a test set, or
whatever) is of intrinsic interest, then there is no problem:
just use that and enjoy the small variance.

If you really cared about FX , acknowledge the uncertainty.

▶ In this case, access to large quantities of unlabeled data is
hugely valuable!!!

It feels like there might be a SATE vs. PATE lesson here. . .
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