
BART as a Gaussian process
Giacomo Petrillo

2023-10-26 
Department of Statistics, Computer Science, Applications (DISIA)

University of Florence

Hosted by UT Austin's SDS

Gaussian process regression
• Another Bayesian nonparametric method

2

Gaussian process regression
• Another Bayesian nonparametric method

• Gaussian process = Multivariate Normal in dimensions∞

3

Gaussian process regression
• Another Bayesian nonparametric method

• Gaussian process = Multivariate Normal in dimensions

• Finite marginals are Normal

∞

4

Gaussian process regression
• Another Bayesian nonparametric method

• Gaussian process = Multivariate Normal in dimensions

• Finite marginals are Normal

• Analytical calculations

∞

⟹

5

Gaussian process regression
• Another Bayesian nonparametric method

• Gaussian process = Multivariate Normal in dimensions

• Finite marginals are Normal

• Analytical calculations

•
A priori

∞

⟹

f(x1)
⋮

f(xn)
∼ 𝒩

m(x1)
⋮

m(xn)
,

k(x1, x1) ⋯ k(x1, xn)
⋮ ⋱ ⋮

k(xn, x1) ⋯ k(xn, xn)
6

GP—Inference
• We know (f(x1), …, f(xn)) = y

7

GP—Inference
• We know

• We want

(f(x1), …, f(xn)) = y

f(x*1), …, f(x*m)

8

GP—Inference
• We know

• We want

•

(f(x1), …, f(xn)) = y

f(x*1), …, f(x*m)

f(x1)
⋮

f(xn)
f(x*1)

⋮
f(x*m)

∼ 𝒩

m(x1)
⋮

m(xn)
m(x*1)

⋮
m(x*m)

,

k(x1, x1) ⋯ k(x1, xn) k(x1, x*1) ⋯ k(x1, x*m)
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

k(xn, x1) ⋯ k(xn, xn) k(xn, x*1) ⋯ k(xn, x*m)
k(x*1 , x1) ⋯ k(x*1 , xn) k(x*1 , x*1) ⋯ k(x*1 , x*m)

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
k(x*m, x1) ⋯ k(x*m, xn) k(x*m, x*1) ⋯ k(x*m, x*m)

9

GP—Inference
• Abbreviate , f = (f(x1), …, f(xn)) f* = (f(x*1), …, f(x*m))

10

GP—Inference
• Abbreviate ,

• Abbreviate

f = (f(x1), …, f(xn)) f* = (f(x*1), …, f(x*m))

(f
f*) ∼ 𝒩 ((m

m*), (Σxx Σxx*
Σx*x Σx*x*))

11

GP—Inference
• Abbreviate ,

• Abbreviate

•

f = (f(x1), …, f(xn)) f* = (f(x*1), …, f(x*m))

(f
f*) ∼ 𝒩 ((m

m*), (Σxx Σxx*
Σx*x Σx*x*))

(f* ∣ f = y) ∼ 𝒩(m* + Σx*xΣ+
xx(y − m), Σx*x* − Σx*xΣ+

xxΣxx*)

12

BART ≠ GP
• “Given its underlying tree structure, intuitively BART may not have the

flexibility to capture the additional uncertainty in regions of poor overlap,
whereas some other “smoother” Bayesian nonparametric models such as
the Gaussian Process may fare better.” (Hahn et al. 2020)

13

BART ≠ GP
• “Given its underlying tree structure, intuitively BART may not have the

flexibility to capture the additional uncertainty in regions of poor overlap,
whereas some other “smoother” Bayesian nonparametric models such as
the Gaussian Process may fare better.” (Hahn et al. 2020)

• “Similarly, while Gaussian processes may induce smoothness in the
regression, it could be argued BART-based models are easier to
implement in practice and work well off-the-shelf with minimal tuning.”
(Hahn et al. 2020)

14

BART ≠ GP
• “Given its underlying tree structure, intuitively BART may not have the

flexibility to capture the additional uncertainty in regions of poor overlap,
whereas some other “smoother” Bayesian nonparametric models such as the
Gaussian Process may fare better.” (Hahn et al. 2020)

• “Similarly, while Gaussian processes may induce smoothness in the
regression, it could be argued BART-based models are easier to implement
in practice and work well off-the-shelf with minimal tuning.” (Hahn et al. 2020)

• “Note how the GP-estimated expected outcomes tick up or down outside the
range of the data based on a handful of observations at the extremes, as
opposed to BART and the linear model which extrapolate in predictable
ways.” (Hahn et al. 2020)

15

BART ≠ GP
• “Finally, several of the discussants proposed Gaussian process models

with limited discussion of the covariance function and how its
parameters are set or inferred. The covariance function is often pivotal
to their success. Unsurprisingly, the squared exponential covariance
function performs splendidly on very smooth response surfaces, but what
happens when this strong assumption is violated? By contrast, BART
has a long track record of adapting successfully to a wide variety of
unknown covariance structures and this robustness is why we chose
to design BCF around BART priors.” (Hahn et. al 2020)

16

BART ≠ GP
• “Although not widely appreciated, BART actually is a Gaussian process,

conditional on the trees (integrating over Gaussian priors over the leaf
parameters). Specifically, the trees define a covariance function where the
correlation between points x and x′ are a function of the proportion of
trees in the forest in which the two points occupy the same leaf. As the
number of trees is increased, this covariance function becomes
increasingly smooth, although it is singular and nonstationary for a
finite number of trees.” (Hahn et al. 2020)

• (N.B. there are technical errors here) Correction: J. Murray has clarified to
me what he meant, and I now agree I was misunderstanding him.

17

BART GP⟶
• yi =

m

∑
j=1

g(xi; Tj, Mj) + εi

18

BART GP⟶
•

• are a priori i.i.d.

yi =
m

∑
j=1

g(xi; Tj, Mj) + εi

g(x; Tj, Mj)

19

BART GP⟶
•

• are a priori i.i.d.

• These are the hypotheses of the multivariate CLT

yi =
m

∑
j=1

g(xi; Tj, Mj) + εi

g(x; Tj, Mj)

20

BART GP⟶
•

• are a priori i.i.d.

• These are the hypotheses of the multivariate CLT

•
As :

yi =
m

∑
j=1

g(xi; Tj, Mj) + εi

g(x; Tj, Mj)

m → ∞
g(x1)

⋮
g(xn)

∼ 𝒩
0
⋮
0

,
kBART(x1, x1) ⋯ kBART(x1, xn)

⋮ ⋱ ⋮
kBART(xn, x1) ⋯ kBART(xn, xn)

21

What is kBART?
• Linero 2017:

• “[...] under some approximations [...] the associated kernel function [...] is [...]
.”k(x, x′￼) ∝ exp(−λ∥x − x′￼∥1)

22

What is kBART?
• Linero 2017:

• “[...] under some approximations [...] the associated kernel function [...] is [...]
.”

• This is a bog-standard GP covariance function

k(x, x′￼) ∝ exp(−λ∥x − x′￼∥1)

23

What is kBART?
• Linero 2017:

• “[...] under some approximations [...] the associated kernel function [...] is [...]
.”

• This is a bog-standard GP covariance function

• But: “Furthermore, our experience is that the empirical performance of a
minimally-tuned implementation of BART is frequently better than
Gaussian process regression using the equivalent kernel [...] We
conjecture that the reason for BART outperforming Gaussian process
regression is that limiting the number of trees in the ensemble allows one to
learn a data-adaptive notion of distance between points.”

k(x, x′￼) ∝ exp(−λ∥x − x′￼∥1)

24

What is kBART?
• O'Reilly 2022 (h/t S. Deshpande):

• k(x, x′￼) ∝ exp(−λPsplit({hyperplanes separating the points})

25

What is kBART?
• O'Reilly 2022 (h/t S. Deshpande):

•

• I did not know about this when I did the calculation in 2022

k(x, x′￼) ∝ exp(−λPsplit({hyperplanes separating the points})

26

What is kBART?
• O'Reilly 2022 (h/t S. Deshpande):

•

• I did not know about this when I did the calculation in 2022

• But I don't see how to use it to do the specific BART calculation

k(x, x′￼) ∝ exp(−λPsplit({hyperplanes separating the points})

27

My kBART

28

• k(x, x′￼) = P(x and x′￼ not separated)

My kBART

29

•

•

k(x, x′￼) = P(x and x′￼ not separated)

= ∑
non-separating trees

P(tree)

My kBART

30

•

•

• I write out the summation recursively for the BART prior

k(x, x′￼) = P(x and x′￼ not separated)

= ∑
non-separating trees

P(tree)

My kBART

31

<latexit sha1_base64="C/RRMXQQtd4MRiCG1fgp3aFHmXo=">AAAFR3iclVRLb9QwEM52t1DCq4UjF4uqkCjbKkG8hLSoKheORaIPqdmNHMe7tZI4qe20VJb/AFf4U/wEfgU3xAUJO1l2s22RyiiKZsbz+OYbJ3GZES58/3tnqdtbvnFz5ZZ9+87de/dX1x7s86JiCO+hIivYYQw5zgjFe4KIDB+WDMM8zvBBnL4z5wenmHFS0I/ivMTDHE4oGRMEhXZFa0u/gRE7dcIciuN4DD71wUx96oInA5BGvhPSU4y4q89OTiqYzEIoGMz10SbwWpa/YHk6lxYCTkAY2mAqGzMtjZIZBH8Ooa0aMAvxjtuvH1eDCK5RvpnBjBSATbAb6TF2yGRyZKxwzCAK5MEMBHXVLNtIyKs8kvodcwFRKskg0K0AjUhIMfCVGpVNEXkWESW1XzXlHbtJTQe+GklNUkR0v2CxeoNRJl6gnBafURM/SFW/TWzb8NxLhTyw2NH7j47/7hM1lTSWxY71kHNXbQ51ZgZjnEl88gYVjKmr19Km2+zlOiRrev9ew3nTaZUz8La+Ms0lNRseNEsBIczKYwikE3iJOwpjLKDq29Hqur/l1wIuK8FUWbemshutdYIwKVCVYypQBjk/CvxSDCVkgqAMKzusOC41dDjBR1qlMMd8KOsPVYGNikNRgBIzQDJQO3E7Q8Kc8/M81pFmIH7xzDivPDMeURQZvwBAjF8PJaFlJTBFpr8gGa77c8SI/jFgkBCGhYBmIAwIBQgyKARmBECEtLPSfwpbs3+GijyHNJHNZ6TktS6N0svRJAcXKb2s7D/bCl5uvfjwfH17Z0r3ivXIemw5VmC9srat99autWehbtL93P3S/dr71vvR+9n71YQudaY5D60FWe78Ad5IiXQ=</latexit>

k(x,x0) = k0(n
�,n0,n+), n = n� + n0 + n+,

kd(0,0,0) = kd((), (), ()) = 1,

kd(n
�,n0,n+) = 1� Pd

"
1� 1

W (n)

pX

i=1
ni 6=0

wi

ni

 n�
i �1X

k=0

kd+1(n
�
n�
i =k

,n0,n+) +

n+
i �1X

k=0

kd+1(n
�,n0,n+

n+
i =k

)

!#
,

W (n) =
pX

i=1
ni 6=0

wi, w > 0, Pd =
↵

(1 + d)�
,

Incomputable!

My kBART

32

<latexit sha1_base64="1Dd+i3BmRRMtj6/IfmlBs2/BaYA=">AAAJ5XictVbNbttGEKbTn0jqX9xeCuQyqO1AgiyDNNq0KOAgSG00Rxep4wBemVhSI2phcslyl7GCLR+ht6LXPkMfp2/TIUX9UKZcB2n3sBjOzO7MfDM7Qy8JhdK2/ffWvffe/+DD+61256OPP/n0swfbn79UcZb6eObHYZy+8rjCUEg800KH+CpJkUdeiOfe1Q+F/Pw1pkrE8mf9JsFhxAMpxsLnmlju9v2/oFp7nTl1dXnsmuPBYd5lEdcTbwzycrAP8w97ScrLfg8eHYFDLBlrHgBjnbteuBAvF8vkCFMv5T6apaqdu7MvP+SJMTmTuHQmzxsvqju40HBgAKczX4A9E0FwUXDYmCySzJwvHezNFWq3dxcXOHkPXkC/Jq0EM61yYwGPIt4jyXGvpspUFlFUKvOU5v6VEUcOYQfSFYQkUlSXSeWWuXZFDkYWe+lR91as5+sRsGTCpY4jQqxv8vyGBgtxrLsUA1wXVmfGCO2FOZaKYKJ7Gw42oA6NSLp06cAVR3ZOmPbf6lj/Lsdm11MYpT6BTrmtZ/JmBBsi64PJ74iuaXKqlrENEGyAs9yZaYyzTMo8wGYk9lkkRqMQf2VNz2EFqv4svas3bsKH5QSmU2H1v2LT/y+wGbwzNoM1bAZ3xOYd62hwC1Ywf5D/UtCeCJpf5CFLlOjSc+412CmPFnKnjHcl7rfQpuQ19AhyaMkt+1av3IeznQZGyD0MDf7y/QgTPSkaMuu02ysgvShGS3OjrPoklI1ycaDsY2XFLLp6raHN3/3t04oZmEJRMnAClObCBw8DIY1Pc1bVsT+hDE7hSTkTWU1iFx1Y41Sb3Skcgb27D/gaJYgx7J7sglBALsA1hiGMcEzTe7Q/L5mlJyhH61b3Ou6DHfvALhfcJJyK2LGqdepubz1ko9jPIpSaRqhSF46d6KHhqRZ+iHmHZQoTApcHeEGk5BGqoSl/LnLYyxTXMSSYggihZOLqCcMjpd5EHmkWBarWZQWzUVZwdByHas0BPf5uaIRMMo3SL+xrEWJpX/mpoJ8ZhJFIUWteBIQgJPg85VpjKoD7PjEz+rvpUH1c+zGNXwKRqZhiIhOYGzYpCTN4jFMaiwSnsw7eTeLl4YHz+OCbn77eefqsArZlPbS+srqWY31rPbWeW6fWmeW3vmw9af3Yet4O2r+1f2//MVO9t1Wd+cKqrfaf/wBZKIog</latexit>

kDD�2(n
�,0,n+) = 1,

kDD�2(n
�, n0
|{z}
6=0

,n+) = 1� PD�2

"
1� 1

W (n)

"
(1� PD�1)S + PD�1(1� (1� �)PD)

pX

i=1
ni 6=0

wi

ni

✓
S + wi

n0
i

ni

◆
1

W (nn�
i =0)

+
1

W (nn+
i =0)

+
n�
i + n+

i � 2

W (n)

!
+

+
wi

W (nn�
i =0)

✓⇢
n0
i + n+

i

����
n+
i

n0
i + n+

i

�
� 1

◆
+

+
wi

W (nn+
i =0)

✓⇢
n0
i + n�

i

����
n�
i

n0
i + n�

i

�
� 1

◆
+

� win0
i

W (n)

�
2 (ni)� (1 + n0

i + n�
i)� (1 + n0

i + n+
i)
�
!##

,

S =
pX

i=1
ni 6=0

wi

✓
1� n0

i

ni

◆
,

{x | E} =

(
E x > 0,

0 x = 0, even if E is not well defined,

Computable
approximate

formula (first stage)

This is exact for
depth ≤ 2. Then I do
some tricks to
"repeat" it without
actually doing the
recursion.

 vs. kBART e−λ∥x−x′￼∥1/p

• Are they similar enough?

33

 vs. kBART e−λ∥x−x′￼∥1/p

• Are they similar enough?

34

BART

 vs. kBART e−λ∥x−x′￼∥1/p

• Are they similar enough?

35

BART
exp(λ=2)

 vs. kBART e−λ∥x−x′￼∥1/p

• Are they similar enough?

36

BART
exp(λ=0.7)

 vs. kBART e−λ∥x−x′￼∥1/p

• Problem:

37

 vs. kBART e−λ∥x−x′￼∥1/p

• Problem:

• kBART(x, x′￼) ≈ 1 −
∥x − x′￼∥1

p

38

 vs. kBART e−λ∥x−x′￼∥1/p

• Problem:

•

• if

kBART(x, x′￼) ≈ 1 −
∥x − x′￼∥1

p

e−λ∥x−x′￼∥1/p ≈ 1 − λ |x1 − x′￼1 | − λ |x2 − x′￼2 | λ → 0

39

 vs. kBART e−λ∥x−x′￼∥1/p

• Problem:

•

• if

• Either it's not separable, or the intercept prior variance is large

kBART(x, x′￼) ≈ 1 −
∥x − x′￼∥1

p

e−λ∥x−x′￼∥1/p ≈ 1 − λ |x1 − x′￼1 | − λ |x2 − x′￼2 | λ → 0

40

 vs. kBART e−λ∥x−x′￼∥1/p

• Problem:

•

• if

• Either it's not separable, or the intercept prior variance is large

• Speculative solution: , which is p.s.d. although
not widely known

kBART(x, x′￼) ≈ 1 −
∥x − x′￼∥1

p

e−λ∥x−x′￼∥1/p ≈ 1 − λ |x1 − x′￼1 | − λ |x2 − x′￼2 | λ → 0

exp(−λ∥x − x′￼∥1/p) − e−λ

41

exp(−λ∥x − x′￼∥1/p) − e−λ

• Proof of positivity:

42

exp(−λ∥x − x′￼∥1/p) − e−λ

• Proof of positivity:

• eλk =
∞

∑
n=0

(λk)n

n!

43

exp(−λ∥x − x′￼∥1/p) − e−λ

• Proof of positivity:

•

• so is a valid covariance function for any

eλk =
∞

∑
n=0

(λk)n

n!
eλk − 1 =

∞

∑
n=1

(λk)n

n!

exp(λk(x, x′￼)) − 1 k

44

exp(−λ∥x − x′￼∥1/p) − e−λ

• Proof of positivity:

•

• so is a valid covariance function for any

• plug

eλk =
∞

∑
n=0

(λk)n

n!
eλk − 1 =

∞

∑
n=1

(λk)n

n!

exp(λk(x, x′￼)) − 1 k

k(x, x′￼) =
1
p

p

∑
i=1

(1 − |xi − x′￼i |)

45

exp(−λ∥x − x′￼∥1/p) − e−λ

• Proof of positivity:

•

• so is a valid covariance function for any

• plug (triangular covariance function)

eλk =
∞

∑
n=0

(λk)n

n!
eλk − 1 =

∞

∑
n=1

(λk)n

n!

exp(λk(x, x′￼)) − 1 k

k(x, x′￼) =
1
p

p

∑
i=1

(1 − |xi − x′￼i |)

46

BART MCMC vs. BART GP

47

At fixed hypers, MCMC > GP

At free hypers, GP > MCMC

Can't explore all hypers with MCMC
because trees must be shallow, and
needs CV

42 benchmark datasets
from original BART paper

5x faster @ n = 6000

Whither BART GP?

48

Many possible further directions:

Whither BART GP?

49

Many possible further directions:

1. Could we bypass MCMC hyperparameter restrictions by combining
BART with something simpler similar to deep trees?

50

Many possible further directions:

1. Could we bypass MCMC hyperparameter restrictions by combining
BART with something simpler similar to deep trees?

2. I benchmarked BART packages on CRAN and picked the fastest; what
about flexBART? (should be faster)

Whither BART GP?

51

Many possible further directions:

1. Could we bypass MCMC hyperparameter restrictions by combining
BART with something simpler similar to deep trees?

2. I benchmarked BART packages on CRAN and picked the fastest; what
about flexBART? (should be faster)

3. GP versions of BART variants (doable but tedious)

Whither BART GP?

52

Many possible further directions:

1. Could we bypass MCMC hyperparameter restrictions by combining
BART with something simpler similar to deep trees?

2. I benchmarked BART packages on CRAN and picked the fastest; what
about flexBART? (should be faster)

3. GP versions of BART variants (doable but tedious)

4. Trying GP techniques to scale to large datasets

Whither BART GP?

53

Many possible further directions:

1. Could we bypass MCMC hyperparameter restrictions by combining
BART with something simpler similar to deep trees?

2. I benchmarked BART packages on CRAN and picked the fastest; what
about flexBART? (should be faster)

3. GP versions of BART variants (doable but tedious)

4. Trying GP techniques to scale to large datasets

5. Make up GP kernels similar to the BART kernel

Whither BART GP?

Conclusions

54

I learned:

Conclusions

55

I learned:

• What you can do with BART you can do with GP

Conclusions

56

I learned:

• What you can do with BART you can do with GP

• Covariance matrices are very sensitive

Conclusions

57

I learned:

• What you can do with BART you can do with GP

• Covariance matrices are very sensitive

• Choice of kernel is very important with GPs, I have the impression there's
too much defaulting

Conclusions

58

I learned:

• What you can do with BART you can do with GP

• Covariance matrices are very sensitive

• Choice of kernel is very important with GPs, I have the impression there's
too much defaulting

• (e.g. exponential quadratic , weird guy)e−∥x−x′￼∥2

Code

• My GP Python package: https://github.com/Gattocrucco/lsqfitgp

• Implements the BART kernel

• And ready to use functions for BART or BCF GP regression

59

https://github.com/Gattocrucco/lsqfitgp

