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Central research question

Assume that we have data

I Y : observed outcome
I Z : binary treatment
I X : vector of discrete covariates

and we know that we can estimate the average treatment effect
[ATE] by conditioning on all of X (we will make this more precise in
a moment!) . . .

. . . can we “do better” than adjusting for all of X? In a principled
manner? Without knowing or estimating a causal DAG?



Why do we work with discrete X

I We can investigate these phenomena (and many classic
asymptotic results in causal inference) in finite samples

I Many common nonparametric methods (i.e. trees, tree
ensembles) condition on adaptive discretizations of continuous
variables



In this case, feature selection becomes “adaptive
stratification”

Define s(X ) as a “stratification function” which maps unique level
sets of X to strata indices which will be used as adjustment sets

For example, the trivial stratification below assigns every unique
value of X to its own stratum

X1 X2 X3 s(X )

0 0 0 1
1 0 0 2
0 1 0 3
1 1 0 4
0 0 1 5
1 0 1 6
0 1 1 7
1 1 1 8



We can perform variable selection with s(X ) (1/2)

For example, dropping X1. . .

X1 X2 X3 s(X )

0 0 0 1
1 0 0 1
0 1 0 2
1 1 0 2
0 0 1 3
1 0 1 3
0 1 1 4
1 1 1 4



We can perform variable selection with s(X ) (2/2)

. . . or dropping X2. . .

X1 X2 X3 s(X )

0 0 0 1
1 0 0 2
0 1 0 1
1 1 0 2
0 0 1 3
1 0 1 4
0 1 1 3
1 1 1 4



Feature selection vs variable selection
s(X ) allows us to define “features” formed out of nonlinear
combinations of variables. For example, we can define

s(X ) = 2 + 2X3 − I (X1 = X2)

X1 X2 X3 s(X )

0 0 0 1
1 0 0 2
0 1 0 2
1 1 0 1
0 0 1 3
1 0 1 4
0 1 1 4
1 1 1 3



ATE estimator based on s(X )

We can use the levels of s(X ) as strata in a classical stratification
estimator

τ̄s =
∑

s∈s(X )

ns
n
(
Ȳs,Z=1 − Ȳs,Z=0

)
where

ns =
n∑

i=1
I (s(Xi ) = s)

Ȳs,Z=1 =
n∑

i=1
YiI (s(Xi ) = s) I (Zi = 1)

Ȳs,Z=0 =
n∑

i=1
YiI (s(Xi ) = s) I (Zi = 0)



Before we talk about identification, we need some notation

Potential outcomes (Y 0,Y 1): counterfactual random outcome
variables in which the treatment is set to 0 or 1 (regardless of the
individual’s covariates)

Observed outcome, Y = ZY 1 + (1− Z )Y 0: product of potential
outcomes and observed treatment assignment

Structural model: rewriting Y 0 and Y 1 in terms of mean and error
components

µ(X ) = E
(
Y 0 | X

)
ν(X , εy ) = Y 0 − µ(X )

τ(X ) = E
(
Y 1 | X

)
− µ(X )

δ(X , εy ) = Y 1 − Y 0 − τ(X )

where E (ν(X , εy ) | X = x) = 0 and E (δ(X , εy ) | X = x) = 0 for all
x



So when does s(X ) identify the ATE

We can use the structural model decomposition to write

Y = µ(X ) + τ(X )Z︸ ︷︷ ︸
Mean term

+ [υ(X , εy ) + δ(X , εy )Z ]︸ ︷︷ ︸
Error term

And through this lens, we identify the ATE (E
[
Y 1]− E

[
Y 0]) when

µ(X ), τ(X ) ⊥⊥ Z | s(X )

Note that this assumption, mean conditional unconfoundedness, is
weaker than the typically-invoked conditional unconfoundedness
assumption (Y 0,Y 1) ⊥⊥ Z | s(X ).

With mean conditional unconfoundedness, estimands such as the
quantile treatment effect are not identified.



Recap: where are we so far?

We have

1. A way of representing feature selection mathematically (s(X ))
2. ATE estimator that uses s(X )
3. Identification criterion for any s(X )

. . . but (µ(X ), τ(X )) are unobservable. . .



A Bayesian approach to feature selection for
statistical control in ATE estimation



We choose s(X ) by MAP estimation in the following model

Y | s(X ) = s,Z = z ∼ N
(
µ(s) + τ(s)z , σ2

)
s(X ) ∼ ps

µ(s) | s(X ) ∝ 1
τ(s) | s(X ) ∝ 1

σ2 ∝ 1

where ps assigns prior probabilities to each s(X ) function.

Setting a flat prior ps , we can see by a standard result in linear
regression that we will prefer s(X ) = X (i.e. the likelihood alone will
not perform feature selection)



We can “favor” certain s(X ) functions with an informative
prior

Y | s(X ) = s,Z = z ∼ N
(
µ(s) + τ(s)z , σ2

)
s(X ) ∼ ps

µ(s) | s(X ) ∝ 1
τ(s) | s(X ) ∝ 1

σ2 ∝ 1

Note: not every s(X ) identifies the average treatment effect



A problem with the naive approach

Define a naive prior that penalizes the size of s(X )

ps ∝ Beta
( |s(X )|
|X | ; 1, α

)

Increasing α expresses a preference for smaller |s(X )|, so this prior
penalizes large stratification functions. . .

. . . but this can bias the ATE severely by dropping confounding
features in favor of non-confounders that are strongly associated
with the outcome (discussed in Hahn et al. (2018) as
“regularization-induced confounding”)



The propensity score offers one way to coarsen X without
confounding the ATE

Rosenbaum and Rubin (1983) demonstrated that rather than
controlling for all of X , we can condition on the “propensity score”
(which we’ll call π(X ) = P (Z = 1|X ))

So setting s(X ) to have the same unique levels as π(X ) is one
viable option for “doing better” than s(X ) = X .

But we need not think of a single propensity score, we can project Z
onto any s(X ):

π(s(X )) = P (Z = 1|s(X ))



We can penalize “excess control” using the relationship
between s(X ) and Z

With π(s(X )) = E (Z | s(X )), we define the s(X ) prior

ps ∝ Beta
( |π(s(X ))|
|s(X )| ;α, 1

)

Increasing α expresses a preference for |π(s(X ))| = |s(X )|, so this
prior penalizes

I Noise features (associated with neither treatment nor
outcome), and

I Features weakly associated with outcome, but not associated
with treatment

However, it still leaves us with features that are associated with
treatment but not the outcome (typically referred to as
“instruments”)



Our proposal: a strong, unbiased excess control prior and a
much weaker size prior

We define

ps ∝ Beta
( |π(s(X ))|
|s(X )| ;α, 1

)
︸ ︷︷ ︸

Excess control penalty

Beta
( |π(s(X ))|

maxs |π(s(X ))| ; 1, η
)

︸ ︷︷ ︸
Deconfounding strata size penalty



Recap: three informative priors ps
Name Density
Size prior Beta

(
|s(X)|

|X | ; 1, α
)

Excess control prior Beta
(

|π(s(X))|
|s(X)| ;α, 1

)
Combined prior Beta

(
|π(s(X))|

|s(X)| ;α, 1
)
Beta

(
|π(s(X))|

maxs |π(s(X))| ; 1, η
)

Figure 1: Prior impact of α



Future Direction

Methods:

I Develop a performant nonparametric implementation of this
regularization approach (i.e. neural networks, trees)

Analytical:

I Study the bias incurred by the combined penalty, develop
practical recommendations on setting η
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Appendix A: Review of Common Causal
Frameworks



Potential Outcomes

Most commonly associated with Donald Rubin and Jerzy Neyman
(see Imbens and Rubin (2015) for a standard reference).

Defines Y z as the counterfactual outcome when Z = z , so that for
binary Z , the observed outcome is Y = ZY 1 + (1− Z )Y 0.

In this context, the ATE is defined as E
[
Y 1 − Y 0] and identified

conditional on X assuming:

I X satisfies strong ignorability:
I Y 1,Y 0 ⊥ Z | X
I 0 < P (Z = 1 | X ) < 1

I SUTVA: no between-subject interference of potential outcomes



Causal DAGs

Most commonly associated with Judea Pearl (see Pearl (2009)).

Represents (X ,Z ,Y ) in a directed graph with edges representing
causal relationships and provides algorithms for identifying and
estimating causal effects given a graph G.

ATE estimand can be represented in this framework as
E [Y | do(Z = 1)]− E [Y | do(Z = 0)] where E [Y | do(Z = z)]
involves an intervention on a graph that sets Z = z while leaving
other variables unchanged.

The ATE can be identified conditional on X if X satisfies the
“backdoor criterion.” In words (visuals to follow!), this happens when
X blocks any open paths from Z to Y and does not open any new
paths from Z to Y .



Structural Equation Models (1/2)

Most commonly associated with James Heckman (see Heckman and
Vytlacil (2005) for a review).

Represents Y in terms of conditional mean functions and exogenous
error terms, defining

µ(x) ≡ E(F (x , 0, εy )),
τ(x) ≡ E(F (x , 1, εy ))− µ(x),

υ(x , εy ) ≡ F (x , 0, εy )− µ(x),
δ(x , εy ) ≡ F (x , 1, εy )− F (x , 0, εy )− τ(x)

where F (X ,Z , εy ) is a deterministic causal function that generates
Y in terms of X , Z , and a random error term εy .



Structural Equation Models (2/2)

This gives a “structural model”

Y = µ(x) + υ(x , εy ) + (τ(x) + δ(x , εy ))z
= µ(x) + τ(x)z︸ ︷︷ ︸

Mean term

+ [υ(x , εy ) + δ(x , εy )z ]︸ ︷︷ ︸
Error term

The ATE is defined as E [τ(X )] and is identified if
(υ(X , εy ), δ(X , εy )) ⊥⊥ Z | X



Equivalence between the frameworks

Each framework states a different version of the requirement that X
can be used to deconfound the effect of Z on Y

1. X satisfies the “backdoor criterion.”
2. Y 1,Y 0 ⊥ Z | X
3. (υ(X , εy ), δ(X , εy )) ⊥⊥ Z | X

Without further assumptions, we have that 1⇒ 2⇔ 3, and
assuming “faithfulness” (see for example Shalizi (2021)) gives
1⇔ 2⇔ 3

All three frameworks require (implicitly or explicitly) a version of
SUTVA and positivity



Verifying identification of the ATE by s(X )
Assuming mean conditional unconfoundedness
(µ(X ), τ(X ) ⊥⊥ Z | s(X )), we see that the ATE is identified:

E (Y | s(X ),Z = 1) = E (µ(X ) | s(X ),Z = 1)
+ E (τ(X ) | s(X ),Z = 1)
+ E (υ(X , εy ) | s(X ),Z = 1)
+ E (δ(X , εy ) | s(X ),Z = 1)

= E (µ(X ) | s(X )) + E (τ(X ) | s(X )) + 0 + 0
E (Y | s(X ),Z = 0) = E (µ(X ) | s(X ),Z = 1)

+ E (υ(X , εy ) | s(X ),Z = 1)
= E (µ(X ) | s(X ))

E (E (Y | s(X ),Z = 1)− E (Y | s(X ),Z = 0)) = E (E (τ(X ) | s(X )))

= E
(
E
(
E
(
Y 1 | X

)
− E

(
Y 0 | X

)
| s(X )

))
= E

(
Y 1
)
− E

(
Y 0
)



Appendix B: Feature selection for graphs



Let’s briefly review graph notation and terminology

We have to define / categorize the types of variables that we might
encounter in a causal inference problem.

Let’s break down this graph into its component variables

X1

X2

X3

X4X5 X6

X7 Z Y



Outcome and Treatment

X1

X2

X3

X4X5 X6

X7 Z Y

This the “relationship of interest,” which we hope to deconfound by
defining an appropriate adjustment set.



Confounders

X1

X2

X3

X4X5 X6

X7 Z Y

These are variables that impact both treatment and outcome. We
definitely need to adjust for them or our estimate of the ATE will be
biased.



Prognostic variables

X1

X2

X3

X4X5 X6

X7 Z Y

These are variables that only impact the outcome. Even though
they don’t confound our estimate, they may still be worth
controlling for, since they control variability in the outcome.



Instruments

X1

X2

X3

X4X5 X6

X7 Z Y

These variables only impact the treatment. We do not want to
control for these variables if we can help it (unnecessary
stratification).



Noise variables

X1

X2

X3

X4X5 X6

X7 Z Y

These variables ended up in the covariate set but are just noise. We
definitely want to avoid conditioning on these variables.



Colliders

X1

X2

X3

X4X5 X6

X7 Z Y

This graph structure has the strange property where:

I If we control for none of (X1,X2,X3), the ATE is identified
I If we only control for X2, the ATE is confounded
I If we control for X2 and X1 or X3, the ATE is identified



Feature selection goals

1. Remove noise variables
2. Remove instruments
3. (Maybe) remove any weak prognostic variables
4. Avoid unblocking colliders

This is where the “in a principled manner” comes into play



Appendix C: “Variable selection” vs “feature
selection” in more detail



Variable selection is easy when we have the causal graph
Take this graph as an example

X1

X2X3

X4

Z Y

By Pearl (2009), (X1,X2) satisfy the “back door criterion” which
means we must adjust for those variables to identify the ATE

We might also want to adjust for X4, but with this graph, we can
confidently remove X3 from the adjustment set.



Now, let’s consider a specific data generating process that
matches this graph

X1 ∼ Bernoulli (p1)
X2 ∼ Bernoulli (p2)
X3 ∼ Bernoulli (p3)
X4 ∼ Bernoulli (p4)

µ(X ) = α0 + α1(2X1X2 − X1 − X2 + 1) + α2X4

π(X ) = β0 + β1(2X1X2 − X1 − X2 + 1) + β2X3

Z ∼ Bernoulli (π(X ))

ε ∼ N
(
0, σ2

ε

)
τ(X ) = γ0

Y = µ(X ) + τ(X )Z + ε



We can rewrite the random variables as follows

I W | X1 takes X1, generates a new random variable with
distribution Bernoulli (p2) and combines the two to yield a
variable identical to (2X1X2 − X1 − X2 + 1)

I µ(X ) |W takes W , generates a new random variable with
distribution Bernoulli (p4) and combines the two to yield a
variable identical to α0 + α1W + α2X4

I π(X ) |W takes W , generates a new random variable with
distribution Bernoulli (p3) and combines the two to yield a
variable identical to β0 + β1W + β2X3



This gives a new causal graph

X1 W

π(X ) µ(X )Z Y

Now, we see that we don’t actually have to control for X1 and X2,
just a synthetic “feature” (W ) created by interacting them.



Checking back in: what have we learned?

1. Variable selection for causal inference is dangerous
2. We can do variable selection if we have a causal graph. . .
3. . . . but even then, we could do better!
4. Ultimately, we want to select “features” that deconfound or

help with prognostic stratification



Appendix D: Past and present of deconfounding
functions in causal inference



From X to s(X )

Let X be a discrete (possibly multivariate) random variable with
|X | = k unique levels, and define s(X ) as a discrete random variable
with |s(X )| ≤ |X |

1. s(X ) = X is a trivial stratification function which performs no
feature selection

2. s(X ) = 1 is the coarsest possible stratification function which
does not sub-divide any observations

Item 1 is what we are trying to improve upon; 2 is only a valid
conditioning set in limited settings (i.e. completely randomized
experiments)



There is already an s(X ) commonly used in causal
inference: the propensity score

Rosenbaum and Rubin (1983) demonstrated that rather than
controlling for all of X , we can condition on the “propensity score”
(which we’ll call π(X ) = P (Z = 1|X ))

So setting s(X ) = π(X ) is one viable option for “doing better” than
s(X ) = X , however the propensity score still leaves us with
instruments.



Another s(X ) used in causal inference: the prognostic score

Hansen (2008) defined a different projection: “prognostic score”
(which we’ll call µ(X ) = E

[
Y 0|X

]
)

When the treatment effect is constant (i.e. τ(x) = τ for all x),
s(X ) = µ(X ) provides another viable conditioning set. More
generally, (µ(X ), τ(X )) together identify the ATE when there is
heterogeneity.

However, defining s(X ) by the level sets of µ(X ) or (µ(X ), τ(X ))
leaves us with prognostic variables.

Furthermore, even if µ(X ) can be estimated from the data, learning
(a function of) τ(X ) is the goal of most of causal inference. If we
already had τ(X ), we could stop right there!



Relaxing assumptions for the ATE: mean conditional
unconfoundedness vs conditional unconfoundedness

The conditional unconfoundedness assumption reviewed in the
context of all three frameworks is stronger than necessary for ATE
estimation.

The averages of Y 0 and Y 1 are driven by their mean functions µ(X )
and µ(X ) + τ(X ). Compare

I Conditional unconfoundedness: (Y 0,Y 1) ⊥⊥ Z | s(X )
I Mean conditional unconfoundedness: (µ(X ), τ(X )) ⊥⊥ Z | s(X )

Mean conditional unconfoundedness identifies the ATE, but not
other estimands such as the quantile treatment effect (QTE).



Principal deconfounding function: smallest possible
conditioning set

Define

λ(X ) = E (π(X ) | µ(X ), τ(X ))

where π(X ) = P (Z = 1 | X )

The unique level sets of λ(X ) define the coarsest possible
stratification function that satisfies mean conditional
unconfoundedness.



Great! So let’s just compute this and condition on it for our
empirical work?

. . . Unfortunately, no. There are several problems:

I If we could reliably estimate τ(X ) from the data (such that we
were comfortable conditioning on it), we wouldn’t need to do
feature selection at all

I Conditioning on λ(X ) removes prognostic variables, but we’d
prefer a procedure that may optionally include prognostic
variables if they have strong effects (for variance reduction
purposes)



Appendix E: Regularization-induced confounding
in more detail



Regularization-induced confounding (RIC) in linear models

Hahn et al. (2018) introduce the idea of “regularization-induced
confounding”

Suppose we are fitting a linear model

Y = α + τZ + β1X1 + · · ·+ βpXp + ε

and we put a steep regularization penalty on the weights β1, . . . , βp
because:

(a) there are many covariates, and
(b) we are not sure they’re all “necessary” andwant to control the

variance of our estimator τ̂ .

If some of the Xi variables are strongly associated with Z , the
estimate of τ will incorporate some of the effects β1 . . .Xp on Y
since we placed constraints on how big β̂1, . . . , β̂p can be.



This occurs more generally in a stratification setting (1/n)

For a given stratification function s(X ), we define

µ(s(X )) ≡ E(Y 0 | s(X )),
τ(s(X )) ≡ E(Y 1 | s(X ))− µ(s(X )),

υ(s(X ), εy ) ≡ Y 0 − µ(s(X )),
δ(s(X ), εy ) ≡ (Y 1 − Y 0)− τ(s(X ))

giving a new “structural model” characterized by s(X ) rather than
all of X

Y = µ(s(X )) + υ(s(X ), εy ) + (τ(s(X )) + δ(s(X ), εy ))Z



This occurs more generally in a stratification setting (2/n)

We use the familiar stratification estimator of the ATE:

τ̄s =
∑

s∈s(X )

ns
n
(
Ȳs,z=1 − Ȳs,z=0

)

and we can represent the predicted value of Y for any s by τ̄s and
two other terms, which we define below

Ŷ = µ̂(s) + Z
(
τ̄s + t̂(s)

)
µ̂(s) = Ȳs,Z=0

t̂(s) =
(
Ȳs,Z=1 − Ȳs,Z=0

)
− τ̄s



This occurs more generally in a stratification setting (3/n)

The true structural component of Y can be similarly decomposed
for any x

µ(x) + Zτ(x) = µ(x) + Z (τx + t(x))
τx = E [τ(X )]

t(x) = τ(x)− E [τ(X )]



This occurs more generally in a stratification setting (4/n)

This can also be written in terms of covariate strata s(X )

τs = Es(X) [E (∆s | s(X ))]
t(s) = E (∆s | s(X ) = s)− Es(X) [E (∆s | s(X ))]

where ∆s = E [Y | s(X ) = s,Z = 1]− E [Y | s(X ) = s,Z = 0]. If
s(X ) does not satisfy mean conditional unconfoundedness, then τs
is not necessarily equal to E (τ(X )).



This occurs more generally in a stratification setting (5/n)

For any random vector (Y ,X ,Z ) for which s(X ) = s, we have that(
Ŷ − Y

)2
=
(
µ̂(s) + Z τ̄s + Zt̂(s)− Y

)2
=
(
µ̂(s) + Z τ̄s + Zt̂(s)− µ(x)− Zτx − Zt(x)

)2
+ (µ(x) + Zτx + Zt(x)− Y )2

+ 2
(
Ŷ − µ(x)− Zτx − Zt(x)

)
(µ(x) + Zτx + Zt(x)− Y )

1. The first term constitutes the “prediction error” of
µ̂(s) + Z τ̄s + Zt̂(s) with respect to the true structural model
µ(x) + Zτx + Zt(x)

2. The second term is a stratification-independent measure of the
magnitude of the outcome noise, and

3. The third term is the double the covariance of Ŷ and the
outcome noise term



This occurs more generally in a stratification setting (6/n)

We compare estimators based on different stratification functions
s(x) via their MSE E

(
Ŷ − Y

)2
. Since

(µ(x) + Zτx + Zt(x)− Y )2 does not depend on the choice of s(X ),
we denote its expectation as σ2. Similarly,
Cov

(
Ŷ , µ(x) + Zτx + Zt(x)− Y

)
is 0 in expectation, so we focus

our analysis on the first term.(
µ̂(s) + Z τ̄s + Zt̂(s)− µ(x)− Zτx − Zt(x)

)2
=
(
(µ̂(s)− µ(x)) + Z (τ̄s − τx ) + Z

(
t̂(s)− t(x)

))2
= (µ̂(s)− µ(x))2 + Z (τ̄s − τx )2 + Z

(
t̂(s)− t(x)

)2
+ 2Z (µ̂(s)− µ(x)) (τ̄s − τx )
+ 2Z (µ̂(s)− µ(x))

(
t̂(s)− t(x)

)
+ 2Z (τ̄s − τx )

(
t̂(s)− t(x)

)



This occurs more generally in a stratification setting (7/n)

We evaluate the expectation of this expression in parts. First, note
that

E (µ̂(s)− µ(x))2 = E ((µ̂(s)− µ(s)) + (µ(s)− µ(x)))2

= E (µ̂(s)− µ(s))2 + E (µ(s)− µ(x))2

+ 2E [(µ̂(s)− µ(s)) (µ(s)− µ(x))]

= E
(
E
(

(µ̂(s)− µ(s))2 | s(X ) = s
))

+ 0 + 0

= E ( Var (µ̂(s) | s(X ) = s))



This occurs more generally in a stratification setting (8/n)

Now, note that

E
[
Z (τ̄s − τx )2

]
= E

[
E
[
Z ((τ̄s − τs) + (τs − τx ))2 | Z

]]
= E

[
E
[
Z (τ̄s − τs)2 | Z

]]
+ E

[
E
[
Z (τs − τx )2 | Z

]]
+ 2E [E [Z (τ̄s − τs) (τs − τx ) | Z ]]

= E (π(X ))
[
Var (τ̄s) + Bias (τ̄s)2

]



This occurs more generally in a stratification setting (9/n)

Also consider that

E
(
Z
(
t̂(s)− t(x)

)2) = EZ
((
t̂(s)− t(s)

)
+ (t(s)− t(x))

)2
= E

(
Zt̂(s)− t(s)

)2 + ZE (t(s)− t(x))2

+ 2EZ
[(
t̂(s)− t(s)

)
(t(s)− t(x))

]
= EZ

(
t̂(s)− t(s)

)2 + EZ (t(s)− t(x))2 + 0



This occurs more generally in a stratification setting (10/n)
Similarly, note that

E [2Z (µ̂(s)− µ(x)) (τ̄s − τx )]
= 2E [Z (µ̂(s)− µ(s) + µ(s)− µ(x)) (τ̄s − τs + τs − τx )]
= 2E [Z (µ̂(s)− µ(s) + µ(s)− µ(x)) (τ̄s − τs + τs − τx )]
= 2E [Z (µ̂(s)− µ(s)) (τ̄s − τs)]

+ 2E [Z (µ(s)− µ(x)) (τ̄s − τs)]
+ 2E [Z (µ̂(s)− µ(s)) (τs − τx )]
+ 2E [Z (µ(s)− µ(x)) (τs − τx )]

= 2E [Z (µ̂(s)− µ(s)) (τ̄s − τs)] + 0 + 0 + 0
= 2Es(X) [E [Z (µ̂(s)− µ(s)) (τ̄s − τs) | s(X )]]
= 2Es(X) [Cov (µ̂(s),Z τ̄s | s(X ))]
= 2 [Cov (µ̂(s),Z τ̄s)− Cov (E [µ̂(s) | s(X )] ,E [Z τ̄s | s(X )])]
= 2 [Cov (µ̂(s),Z τ̄s)− Cov (µ(s), π(s(X ))τ̄s)]



This occurs more generally in a stratification setting (11/n)
Thus, our objective function decomposes into a sum of several
objectives

E
(
Ŷ − Y

)2
= E (Var (µ̂(s) | s(X ) = s))

+ E (π(X ))
[
Var (τ̄s) + Bias (τ̄s)2

]
+ EZ

(
t̂(s)− t(s)

)2 + EZ (t(s)− t(x))2

+ 2 [Cov (µ̂(s),Z τ̄s)− Cov (µ(s), π(s(X ))τ̄s)]
+ 2Es(X)

[
Cov

(
µ̂(s),Zt̂(s) | s(X )

)]
+ 2Es(X)

[
Cov

(
Zt̂(s),Z τ̄s | s(X )

)]
In an unconstrained optimization of E

(
Ŷ − Y

)2
, we minimize the

MSE by setting s(X ) = X . But if place a regularization penalty on
|s(X )|, we may favor smaller subsets of X that do not increase the
MSE substantially.



This occurs more generally in a stratification setting (12/n)

Here we see that the degree of bias this can induce in τ̄s does not
substitute in a bivariate fashion with Var (τ̄s) as in the classic
bias-variance tradeoff.

Instead, the bias incurred by penalizing |s(X )| trades off with 8
other terms, namely. We can reduce the MSE by

1. Conditioning on sets s(X ) that reduce variance of µ̂(s)
2. Conditioning on sets s(X ) that increase covariance of µ(s) and
π(s(X ))τ̄s

The first scenario is possible when µ(X ) is large in magnitude
relative to τ(X ). The second scenario is possible when µ(X ) is
strongly correlated to treatment probabilities (a phenomenon
referred to as “targeted selection” in Hahn, Murray, and Carvalho
(2020)).



Appendix F: Equivalence of the stratification,
[saturated] regression, and IPW estimators



When you hear “conditional on” / “adjusting for,” think
regression

With discrete X, we can obtain the exact same result using a
stratification estimator, an IPW estimator, or a saturated linear
regression model

Y = β0 + β1Z + β2X1 + · · ·+ βp+2X1Z + · · ·+ ε

Essentially, we estimate a different model Yx = β0,x + β1,xZx for
each unique x ∈ X and weight the estimates accordingly.

When we talk about “controlling for” variables, what we typically
mean for the purposes of this talk is this style of regression.



Define the three estimators as follows

τ̄IPW = 1
n

n∑
i=1

( YiZi
p̂(Xi )

− Yi (1− Zi )
1− p̂(Xi )

)
τ̄strat =

∑
x∈X

nx
n
(
Ȳx ,Z=1 − Ȳx ,Z=1

)
τ̄reg = 1

n

n∑
i=1

(
ŶZ=1,X=xi − ŶZ=0,X=xi

)
where

p̂(x) = Nx ,Z=1
nx

Nx ,Z=1 =
n∑

i=1
1(Xi = x ,Z = 1)

nx =
n∑

i=1
1(Xi = x)

and the regression fit for τ̄reg is a fully saturated linear model

Y = βI + βZZ + βX1X1 + · · ·+ βX1,ZX1Z + · · ·+ ε



Now, we compare the IPW and stratification estimators

τ̄IPW = 1
n

n∑
i=1

( YiZi
p̂(Xi )

− Yi (1− Zi )
1− p̂(Xi )

)

= 1
n
∑
x∈X

(
nxNx ,Z=1Ȳx ,Z=1

Nx ,Z=1
− nxNx ,Z=0Ȳx ,Z=0

Nx ,Z=0

)

= 1
n
∑
x∈X

(
nx Ȳx ,Z=1 − nx Ȳx ,Z=0

)
=
∑
x∈X

nx
n
(
Ȳx ,Z=1 − Ȳx ,Z=0

)
= τ̄strat



Finally, we compare the regression and stratification
estimators

τ̄reg = 1
n

n∑
i=1

(
ŶZ=1,X=xi − ŶZ=0,X=xi

)
=
∑
x∈X

nx
n
(
ŶZ=1,X=x − ŶZ=0,X=x

)
since X is discrete, we can represent Ŷz,x using cell means

=
∑
x∈X

nx
n
(
Ȳx ,Z=1 − Ȳx ,Z=1

)
= τ̄strat



We can see this in R. First, we generate some data.

# Define functions
pi_func <- function(x) .25 + .25*(x > 2) + .25*(x > 4)
mu_func <- function(x) x
tau_func <- function(x) 2 - 1*(x > 2) + 0.5*(x > 4)

# Generate data
n <- 1000
x <- sample(1:5, size = n, replace = T)
pi_x = pi_func(x)
mu_x = mu_func(x)
tau_x = tau_func(x)
z <- rbinom(n, 1, pi_x)
eps <- rnorm(n, 0, 0.5*sd(mu_x))
y <- mu_x + z*tau_x + eps
ATE_true = mean(tau_x)



Fit the stratification estimator

contrast_func = function(i) {
mean(y[z==1 & x == i]) - mean(y[z==0 & x == i])

}
strata_contrast = sapply(1:5, contrast_func)
strata_weights = sapply(1:5, function(i) sum(x == i) / n)
(tau_hat_strat = sum(strata_contrast*strata_weights))

## [1] 1.550431



Fit the IPW estimator

pi_hat_x = sapply(
1:5, function(i) mean(z[x == i])

)[x]
ipw_summand = (

((y*z)/(pi_hat_x)) - ((y*(1-z))/(1-pi_hat_x))
)
(tau_hat_ipw = sum(ipw_summand))/n

## [1] 1.550431



Fit the regression estimator

saturated_model = lm(y ~ as.factor(x)*as.factor(z))
y_hat_1 = predict(

saturated_model, newdata = data.frame(z=1, x=x)
)
y_hat_0 = predict(

saturated_model, newdata = data.frame(z=0, x=x)
)
(tau_hat_reg = mean(y_hat_1 - y_hat_0))

## [1] 1.550431
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